Enthusiasm never stops


C++ vs. Python vs. Perl vs. PHP performance benchmark (part #2)

This time we will focus on the startup time. The process start time is important if your processes are not persistent. If you are using FastCGI, mod_perl, mod_php, or mod_python, then these statistics are not so important to you. However, if you are spawning many processes which do something small and live for a very short time, then you should consider the CPU resources which get wasted while the script interpreter is being initialized.

The benchmarked scripts do only one thing – say “Hello, world” on the standard output. They do not include any additional modules in their source code – this may, or may not be your use-case. Though, very often the scripting languages have pretty many built-in functions, and for simple tasks you never need to include other modules.

Here are the benchmark results:

Language CPU time Slower than
User System Total C++ previous
C++ (with or w/o optimization) 2.568 3.536 6.051
Perl 12.561 6.096 18.723 209% 209%
PHP (w/o php.ini) 20.473 13.877 34.918 477% 86%
Python 27.014 11.881 39.318 550% 13%
Python + Psyco 32.986 14.845 48.132 695% 22%

The clear winner among the script languages this time is… Perl. ๐Ÿ™‚

All scripts were invoked 3000 times using the following Bash loop:

time ( i=3000 ; while [ “$i” -gt 0 ]; do $CMD >/dev/null ; i=$(($i-1)); done )

All tests were done on a Kubuntu Lucid box. The versions of the used software packages follow:

  • g++ (GNU project C and C++ compiler) 4.4.3
  • Python 2.6.5
  • Python Psyco 1.6 (1ubuntu2)
  • Perl 5.10.1
  • PHP 5.3.2 (1ubuntu4.2 with Suhosin-Patch), Zend Engine 2.3.0

The C++ implementation follows, click “show source” below to see the full source:

#include <iostream>
using namespace std;

int main() {
	cout << "Hello, world!\n";
	return 0;

The Perl implementation follows, click “show source” below to see the full source:

use strict;
use warnings;

print "Hello, world!\n";

The PHP implementation follows, click “show source” below to see the full source:

echo "Hello, world!\n";

The Python implementation follows, click “show source” below to see the full source:

#import psyco

print 'Hello, world!'

Update (Jan/14/2012): Copied the used test environment info here.


C++ vs. Python vs. Perl vs. PHP performance benchmark

Update: There areย newer benchmark results.

This all began as a colleague of mine stated that Python was so damn slow for maths. Which really astonished me and made me check it out, as my father told me once that he was very satisfied with Python, as it was very maths oriented.

The benchmarks here do not try to be complete, as they are showing the performance of the languages in one aspect, and mainly: loops, dynamic arrays with numbers, basic math operations.

Out of curiosity, Python was also benchmarked with and without the Psyco Python extension (now obsoleted by PyPy), which people say could greatly speed up the execution of any Python code without any modifications.

Here are the benchmark results:

Language CPU time Slower than Language
User System Total C++ previous
C++ (optimized with -O2) 1,520 0,188 1,708 g++ 4.5.2 link
Java (non-std lib) 2,446 0,150 2,596 52% 52% 1.6.0_26 link
C++ (not optimized) 3,208 0,184 3,392 99% 31% g++ 4.5.2 link
Javascript (SpiderMonkey) see comment (SpiderMonkey seems as fast as C++ on Windows)
Javascript (nodejs) 4,068 0,544 4,612 170% 36% 0.8.8 link
Java 8,521 0,192 8,713 410% 150% 1.6.0_26 link
Python + Psyco 13,305 0,152 13,457 688% 54% 2.6.6 link
Ruby see comment (Ruby seems 35% faster than standard Python)
Python 27,886 0,168 28,054 1543% 108% 2.7.1 link
Perl 41,671 0,100 41,771 2346% 49% 5.10.1 link
PHP 5.4 roga’s blog results (PHP 5.4 seems 33% faster than PHP 5.3)
PHP 5.3 94,622 0,364 94,986 5461% 127% 5.3.5 link

The clear winner among the script languages is… Python. ๐Ÿ™‚

NodeJS JavaScript is pretty fast too, but internally it works more like a compiled language. See the comments below.

Please read the discussion about Java which I had with Isaac Gouy. He accused me that I am not comparing what I say am comparing. And also that I did not want to show how slow and how fast the Java example program can be. You deserve the whole story, so please read it if you are interested in Java.

Both PHP and Python are taking advantage of their built-in range() function, because they have one. This speeds up PHP by 5%, and Python by 20%.

The times include the interpretation/parsing phase for each language, but it’s so small that its significance is negligible. The math function is called 10 times, in order to have more reliable results. All scripts are using the very same algorithm to calculate the prime numbers in a given range. The correctness of the implementation is not so important, as we just want to check how fast the languages perform. The original Python algorithm was taken from http://www.daniweb.com/code/snippet216871.html.

The tests were run on an Ubuntu Linux machine.

You can download the source codes, an Excel results sheet, and the benchmark batch script at:

Update (Jul/24/2010): Added the C++ optimized values.
Update (Aug/02/2010): Added a link to the benchmarks, part #2.
Update (Mar/31/2011): Using range() in PHP improves performance with 5%.
Update (Jan/14/2012): Re-organized the results summary table and the page. Added Java.
Update (Apr/02/2012): Added a link to PHP 5.4 vs. PHP 5.3 benchmarks.
Update (May/29/2012): Added the results for Java using a non-standard library.
Update (Jun/25/2012): Made the discussion about Java public, as well as added a note that range() is used for PHP and Python.
Update (Aug/31/2012): Updated benchmarks for the latest node.js.
Update (Oct/24/2012): Added the results for SpiderMonkey JavaScript.
Update (Jan/11/2013): Added the results for Ruby vs. Python and Nodejs.